Home Tests Life Science (Grades 9–12) Preparation Materials MTLE Elements: Life Science (Grades 9–12) Subtest 1: Sample Items

Life Science (Grades 9–12)

Subtest 1 Sample Items

1. In biology, computer models would be most helpful for exploring which of the following phenomena?

- A. the life cycles of ferns and mosses
- B. the evolution of analogous structures in different phyla
- C. the nutritional requirements of a bacterial strain
- D. the interactions of biotic and abiotic factors in an ecosystem

2. Before students in a life science class read a new chapter in their textbook, the teacher writes three to four statements on the board related to key concepts addressed in the chapter (e.g., "Limiting factors prevent a population from increasing in size indefinitely"). The teacher gives students ten minutes to discuss the statements with a partner and try to think of evidence that would support each statement. Afterward, partners share their ideas in a whole-class discussion. These prereading activities help promote students' comprehension of the chapter primarily in which of the following ways?

- A. by guiding the students to adjust their reading rate to match the difficulty level of the text
- B. by providing the students with a strategy for distinguishing facts from opinions in the text
- C. by showing the students how to use visualization to construct meaning as they read the text
- D. by activating and building the students' background knowledge related to the text

3. In a protein molecule, interactions between the molecule's side chains are responsible for the protein's:

- A. primary structure.
- B. secondary structure.
- C. tertiary structure.
- D. quaternary structure.

4. Which of the following types of mutations is depicted in the diagram below?

³ ATGGTCAT<mark>G</mark>CCTAGT⁵

⁵ TACCAGTATGGATCA³

- A. aneuploidy
- B. missense mutation
- C. gene deletion
- D. frameshift mutation

5. In the process of cloning a human gene, the cloning vector is typically:

- A. a strand of bacterial RNA.
- B. an E. coli cell.
- C. an isolated bacterial plasmid.
- D. a nucleic acid probe.

Answer Key

Item Number	Correct Response	Subarea	Objective
1	D	I. Life Science Research and Applications	0002
2	D	I. Life Science Research and Applications	0003
3	С	II. Molecular and Cellular Life Processes	0006
4	В	III. Molecular Reproduction and Heredity	0009
5	С	III. Molecular Reproduction and Heredity	0010

Top of Page

Copyright © 2012 Pearson Education, Inc. or its affiliate(s). All rights reserved. Evaluation Systems, Pearson, P.O. Box 226, Amherst, MA 01004